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Abstract

Language models (LMs) only pretrained on a general and massive corpus usu-1

ally cannot attain satisfying performance on domain-specific downstream tasks,2

and hence, finetuning pretrained LMs is a common and indispensable practice.3

However, domain finetuning can be costly and time-consuming, hindering LMs’4

deployment in real-world applications. In this work, we consider the incapability5

to memorize domain-specific knowledge embedded in the general corpus with rare6

occurrences and “long-tail” distributions as the leading cause for pretrained LMs’7

inferior downstream performance. Analysis of Neural Tangent Kernels (NTKs)8

reveals that those long-tail data are commonly overlooked in the model’s gradient9

updates and, consequently, are not effectively memorized, leading to poor domain-10

specific downstream performance. Based on the intuition that data with similar11

semantic meaning are closer in the embedding space, we devise a Cluster-guided12

Sparse Expert (CSE) layer to actively learn long-tail domain knowledge typically13

neglected in previous pretrained LMs. During pretraining, a CSE layer efficiently14

cluster domain knowledge together and assign long-tail knowledge to designate15

extra experts. CSE is also a lightweight structure that only needs to be incorporated16

in several deep layers. With our training strategy, we found that during pretrain-17

ing, data of long-tail knowledge gradually formulate isolated, “outlier” clusters18

in an LM’s representation spaces, especially in deeper layers. Our experimental19

results show that only pretraining CSE-based LMs is enough to achieve superior20

performance than regularly pretrained-finetuned LMs on various downstream tasks,21

implying the prospects of finetuning-free language models.22

1 Introduction23

In natural language processing, it is a prevalent paradigm to pretrain language models (LMs) on24

a large-scale unlabeled corpus covering a plethora of knowledge, and those pretrained LMs have25

exhibited impressive performance in language tasks in the general domain [40]. When it comes to26

downstream tasks requiring specialized domain knowledge, e.g., legal search or medical question27

answering [24, 7], those models usually fail to expertise in such knowledge and cannot acquire28

desirable performance. As such, finetuning on domain-specific datasets is deemed essential to fulfill29

pretrained LMs’ potential in various downstream tasks [22, 14, 41, 36]. However, finetuning an LM30

could require domain expertise from humans, for instance, the involvement of a doctor for healthcare31

tasks [31], which can be costly and laborious. The associated catastrophic forgetting issue [27] could32

further complicate the finetuning process.33

In this work, we re-visit the pretraining-finetuning paradigm and raise the following question: is34

finetuning indispensable to LMs? Notably, the domain-specific knowledge necessary for various35
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(a) (b)

Figure 1: a) The top 20 subreddits with the highest amount of data in the Reddit Comments Dataset,
where a typical long-tail distribution can be observed. b) Language Models struggle to memorize
long-tail domain knowledge during pre-training. The less frequently a sentence appears in the training
corpus, the higher its perplexity, indicating that it is not effectively memorized.

downstream tasks is usually embedded in the pretraining corpus of extensive information sources.36

Those pieces of domain-specific information may only appear a few times in the massive corpus,37

significantly less frequently than other ubiquitous and general knowledge, and there can be numerous38

pieces of such rare information, a distribution usually defined as “long-tail”. In Fig 1(a), we plot39

the frequency of the top-20 subreddits count on Reddit Comments Dataset [2], and a typical long-40

tail distribution can be observed. Previous works have verified that LMs are not good learners of41

long-tail knowledge in the pretraining dataset with Question-Answering as the downstream task[21].42

Our experiments, as shown in Figure 1(b), further illustrate that pretrained LMs do not adequately43

retain domain-specific knowledge in long-tail sequences which is evidenced by a surge in perplexity44

corresponding to decreased frequency score. This could result in inferior performance on downstream45

tasks. Finetuning improves LMs’ domain performance by providing a second lesson, which could be46

avoided if the first (pretraining) is appropriately delivered.47

To unveil the hidden mechanisms under LM’s incapability to learn long-tail domain-specific knowl-48

edge, we investigate the behaviors of a GPT on the Wikipedia dataset. We examine LMs’ learning49

capabilities on long-tail data by analyzing the Neural Tangent Kernels (NTKs) of long-tail data and50

all data. Recent research [5, 39] has indicated that the updating of deep networks can be governed by51

the gradient direction corresponding to the principle eigenvector of an NTK matrix, which reflects the52

most common gradient-descending direction across the entire input space. Following those works,53

we consider an NTK’s principle eigenvector (PE) gradient direction as a primary indicator of an LM’s54

overall gradient-updating direction over a data space. Our analysis has revealed that the PE gradient55

direction of long-tail data, indicating the gradient-descending direction from long-tail knowledge, is56

generally diverged from that of overall data, which rules the overall updating of network parameters.57

The observation that long-tail data cannot substantially impact LMs’ parametric updates under regular58

pretraining settings explains pretrained LMs’ incompetence on domain-specific knowledge of rare59

occurrences, necessitating an effective solution.60

To this end, we propose the Cluster-guided Sparse Expert (CSE) layer, an effective, efficient, and61

easy-to-implement approach to improve LMs’ long-tail knowledge awareness. In a CSE layer, with62

intuition such that data with similar semantic meaning are closer in the embedding space, we perform63

efficient clustering on the embeddings to group data from different domains, and additional experts64

will be assigned to explicitly and appropriately memorize the information within those clusters.65

Models trained with CSE show pronounced cluster structure in the embedding space, where long-tail66

data forms small, outlier clusters. We empirically demonstrate that converting several deep layers67

into CSE ones can be enough to achieve satisfying results, such as the last two layers of GPT[29] or68

BERT[10], and the incurred computational costs are comparatively small and arguably acceptable.69

We have verified that pretrained CSE-based LMs have outperformed regularly pretrained-finetuned70

LMs on downstream tasks from various domains, which implies that domain finetuning may not be71

essential if long-tail knowledge can be sufficiently learned.72

Our contributions are summarized as follows:73
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• We have presented that datasets show a long-tail distribution, with domain specific data in74

the long-tail, and revealed that long-tail data cannot substantially affect LMs’ training, which75

is a leading cause of LMs’ incompetence on learning rare, domain-specific knowledge.76

• We have devised a Cluster-guided Sparse Expert (CSE) architecture to better pretrain LMs77

to memorize the long-tail domain knowledge. With such a training strategy, LMs can78

effectively capture long-tail domain data in the representation space as outlier clusters,79

thereby enhancing their ability to handle less frequent contexts efficiently.80

• Promising performance on downstream tasks has verified the effectiveness of the proposed81

method, indicating that finetuning may not be indispensable to LMs.82

2 Analysis of Long-Tail Domain Data83

In this section, we first elucidate the challenges associated with learning from long-tail data through84

gradient analysis. We then explore the embedding space using the Cluster-guided Sparse Expert85

(CSE) layer, which effectively captures the structural nuances of long-tail data. Furthermore, we86

examine the dynamics of these clustering structures, offering insights into how the learning processes87

of long-tail clusters adapt and evolve across various training stages and model layers.88

2.1 Challenges in Learning Long-Tail Domain Data89

This subsection explores the significant challenges posed by long-tail domain data within language90

models (LMs). The primary issue stems from the divergence in gradient directions between long-tail91

data and the general gradient-updating trajectory of these models, which critically hampers effective92

learning.93

2.1.1 Preliminaries and Definitions94

Informed by seminal works [12, 19], we utilize Neural Tangent Kernels (NTKs) to scrutinize the95

gradient behavior of neural networks under a gradient descent training regime. The NTK, represented96

as Θ(X ,X ), is defined as the outer product of the gradients of network outputs relative to its97

parameters Θ(X ,X ) = Jθ(X )Jθ(X )⊤, where Jθ = ∇θf(X ;θ) denotes the Jacobian matrix of the98

function f at the data points X .99

To determine the predominant gradient-descending direction across the input space, which is influ-100

enced by the gradient direction associated with the principal eigenvector of the NTK matrix, we first101

perform an eigenvalue decomposition of the NTK matrix. Recognized as a positive semi-definite real102

symmetric matrix, the NTK decomposes into Θ = UΛU⊤ =
∑n

i=1 λiuiu
⊤
i . Here, n represents103

the total number of training instances. The principal eigenvector umax is identified as the vector104

corresponding to the maximum eigenvalue. Then the primary gradient direction for a given input set105

X is gθ(X ) = umaxJθ(X ). Building upon above preliminaries, we introduce the metric of Gradient106

Consistency (GC) to evaluate the alignment between gradient directions for specific data subsets and107

the overall dataset.108

Definition 1 (Gradient Consistency (GC)). Let X ′ be a specific subset of the training set X . The109

gradient consistency of X ′ is evaluated by computing the cosine similarity between the most prevalent110

gradient direction of X ′ and that of the entire dataset X :111

GCθ(X
′) =

gθ(X ) · gθ(X ′)

∥gθ(X )∥∥gθ(X ′)∥
. (1)

A higher GC value indicates that the model’s optimization updates are well-aligned with the needs of112

the specific subset X ′, suggesting focused and effective learning of this data. Conversely, a lower113

value indicates suboptimal learning of these data, pointing to potential areas for improvement in114

model training strategies.115

2.1.2 Gradient Consistency (GC) Analysis116

We assess the sentences from Wikipedia on a standard GPT model using sentence frequency score to117

gauge how frequently each sentence appears in the corpus. This score is calculated by averaging the118
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frequency of its constituent tokens. Figure 2(a) displays the relationship between GC and sentence119

frequency score. Additionally, the figure includes a histogram that details how many percentage of120

sentences across the whole dataset falling into each frequency bin.121

There is a significant correlation between gradient consistency and the frequency with which sentences122

appear in the corpus. Notably, for sentences less frequently encountered in the dataset, the model123

demonstrates substantial ineffectiveness in learning. As demonstrated, the GC value sharply declines124

from 0.8 to 0.4 as the sentence frequency score decreases from 0.3 to 0.2. Furthermore, the GC value125

continues to diminish as the sentence frequency score decreases further, indicating that the model’s126

gradient descent direction struggles to align with the requirements of these rare sentences.127

Our analysis indicates that the optimization requirements for long-tail sentences are significantly128

overlooked under standard pretraining conditions, resulting in the unique characteristics of long-tail129

domain data not being effectively captured. This oversight substantially impairs the performance of130

LMs when learning domain-specific knowledge involving rare occurrences, underscoring the need131

for a more effective solution.132

(a) (b)

Figure 2: a) The correlation between sentence frequency score and gradient consistency. A histogram
is also included showing how many percentage of sentences across the whole dataset falling into each
frequency bin. b) A sampled embedding space containing 4 long-tail clusters, taken from our CSE
layers.

2.2 Embedding Space Analysis With Cluster-guided Sparse Expert (CSE) layer133

Prior research[2] has shown that extensive domain-specific data reside within the long-tail distribution134

of a general pretraining corpus, as illustrated in Figure 1(a). These data, often semantically similar, are135

likely to cluster closely within the embedding space, facilitating potential aggregation for dedicated136

learning. However, our analysis in Section 2.1 underscores significant challenges in learning from137

long-tail data. Specifically, the model’s gradient updates frequently fail to align with the optimization138

needs of these data, leading to their underrepresentation in the embedding space. Such misalignment139

obscures the inherent group structures that these domain data form based on their semantic similarities,140

thereby impeding dedicated learning efforts.141

To address the issues outlined above and to facilitate a more effective examination of long-tail142

domain data in the embedding space, we propose the Cluster-guided Sparse Expert (CSE) layer. This143

layer groups proximate long-tail data points into clusters and directs them to specialized experts for144

dedicated learning. As demonstrated in Figure 3(a), the GC value of long-tail data initially increases145

at the beginning of the training stage but rapidly declines thereafter, indicating that the model’s146

inability to capture the learning dynamics of long-tail data begins early in the training process. Our147

CSE layer capitalizes on the clustering structure at the point where the GC value peaks, subsequently148

taking effect to channel domain-specific clusters into dedicated learning pathways. Further details149

about this approach are provided in Section 3.150
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The clustering results from the CSE-based LM, shown in Figure 2(b), reveal four smaller clusters151

alongside a predominant one. Detailed analysis shows high domain coherence within the smaller152

clusters, each comprising sentences closely related to specific domains. The average sentence153

frequency score of these domain clusters falls into the long-tail of the sentence frequency distribution,154

as shown in Figure 2(a). In contrast, the predominant cluster, colored in purple, contains a diverse155

mix of more common data and exhibits a higher average sentence frequency compared to the156

smaller clusters. Further analysis of sentences with frequency scores below 0.2 shows their random157

distribution across clusters, suggesting these extremely infrequent sentences may serve as noise in158

the learning process.159

This analysis demonstrates that our proposed CSE-based architecture effectively groups long-tail160

data from the same domains for dedicated learning, fostering a domain-specific clustering structure161

within the embedding space. The long-tail domain clusters, distinct from clusters containing common162

data, show a higher degree of compactness and are clearly separated, highlighting the unique features163

embodied by these clusters.164

2.3 Dynamic of Long-Tail Domain Clusters165

In this subsection, we explore the learning dynamics of long-tail domain data by tracking how clusters166

evolve across different training stages and model layers. We utilize K-Means clustering [20] and167

employ the elbow method to determine the optimal number of clusters.168

Long-tail clusters can be seen early in the training stage. As shown in Figure 3(b) and Figure 3(c),169

the number of clusters quickly peaks early in the training stage, accompanied by a peak in inter-cluster170

distances. This indicates that our CSE-based architecture effectively promotes the formation of a171

clustering structure early on.172

The swift emergence of these clusters signifies substantial model adaptation to global features at173

the start of training, allowing for effective differentiation between clusters. As training progresses,174

inter-cluster distances gradually decrease, suggesting a stabilization in the learning dynamics and a175

potential shift in focus toward refining intra-cluster nuances.176

(a) (b) (c)

Figure 3: a) Evolution of the Gradient Consistency (GC) of long-tail data over the former 8000
training steps. GC scores beyond this range are omitted, as they consistently remain below 0.2.
b) Evolution of number of clusters over training steps. c) Evolution of inter-cluster distances over
training steps.

Long-tail clusters become more pronounced with increasing network depth. Figures 3(b) and177

3(c) demonstrate that the number of clusters is consistently higher in the deeper layers compared178

to the lower layers, with inter-cluster distances escalating significantly in the last two layers and179

reaching their maximum in the final layer. This pattern indicates that clusters become increasingly180

distinct and better separated as they progress through the network’s layers.181

The enhanced separation of clusters in deeper layers can be attributed to the hierarchical feature182

extraction inherent in deep neural networks. As data moves through successive layers, the network183

abstracts and compiles more complex features, transitioning from general to more specific attributes.184

This hierarchical processing allows the final layers to capture and enhance subtle distinctions between185

different data groups, leading to more defined and isolated clusters. This process not only underscores186
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(a) (b)

Figure 4: a) Overview of the Cluster-guided Sparse Expert (CSE) layer. b) The cluster number
fluctuation is mainly caused by the big common cluster. These four figures arranged sequentially
from top to bottom, were sampled at every 10,000 steps throughout the process from the FFN of the
10-th layer in a GPT model.

the capability of deep layers to refine and emphasize key features but also illustrates the network’s187

efficiency in encoding progressively finer-grained information as layer depth increases.188

3 Clsuter-guided Sparse Expert (CSE)189

To avoid the troublesome and costly domain finetuning, we design a novel strategy, named Clsuter-190

guided Sparse Expert (CSE), to help the model capture the long-tail domain knowledge during191

pretraining. Since long-tail domain data show poor gradient consistency with overall data, we employ192

a sparse expert architecture within the Transformer model to assign data to different parameters,193

thereby avoiding the gradient conflict in each parameter group. This strategy can be applied on either194

attention or FFN. To dispatch data, with a straightforward and generally accepted intuition such that195

data with similar semantic meaning are closer in the embedding space, we design a very simple,196

efficient but effective online clustering algorithm operating concurrently with the language model197

pretraining, separate embeddings into different clusters, and use the outcome of this algorithm to198

instruct the dispatching of embeddings. The proposed algorithm is outlined in Algorithm 1.199

Algorithm 1 Cluster-guided Sparse Expert
Require: w: Warm-up step count
Require: N : Initialization data count
Require: M : Gaussian random matrix ∈ Rd×d′

for reducing
dimension

Require: S: Incoming embedding stream
Require: α: center update factor

1: Wait w steps till the warm-up end.
2: Sample N data and run a clustering algorithm. Initialize

cluster structure with the outcome by recording the cluster
center ci and radius ri for each cluster.

3: for v in S do
4: v′ = Mv
5: i = argminCj=1 ||v′ − cj ||/rj
6: Dispatch v to parameter group i
7: ci = αci + (1− α)v′

8: end for

Dimension Reduction In high-200

dimensional vector clustering,201

computational efficiency poses a202

significant challenge due to the203

O(d2) complexity of computing204

vector distance where d denotes205

the dimensionality. So, we em-206

ploy the same way of dimension207

reduction as is discussed in Sec-208

tion 2 before applying cluster-209

ing on the embeddings, using210

a Gaussian random initialized211

matrix to project embeddings212

to a low-dimensional space[23].213

This process, grounded in the214

Johnson-Lindenstrauss Lemma,215

effectively preserves the pairwise216

distances between embeddings217

while reducing their dimension-218

ality, thereby enhancing the efficiency of our clustering algorithm.219
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Initialization We commence by training a baseline dense model devoid of any expert structure. Our220

findings in Section 2 illuminate an initial rise in gradient consistency between long-tail domain data221

and the general dataset at the onset of training, subsequently followed by a downturn. Consequently,222

we adopt a warm-up stage, letting the model learn the common features of long-tail and non-long-223

tail data. In our experiments, this process typically accounts for no more than 1% of the overall224

training. We then sample N instances from the dataset and use its clustering result to initialize the225

cluster structure. We utilized DBSCAN [30] in our experiments, a clustering algorithm that does not226

explicitly require the number of clusters. For every identified cluster, we document its centroid and227

define its radius as the average distance of all constituent data points from this central point228

After this warm-up period, we fix the number of clusters and copy the module into cluster number229

copies. The module selection is introduced in the next paragraph. In our experiments, we noticed230

that the variations in the number of clusters were primarily driven by the splitting and merging of231

larger clusters, as illustrated in Figure 4(b); the smaller, long-tail clusters, however, remained largely232

unchanged. Consequently, adopting the initial clustering configuration directly, without further233

adjustments during training, was found to have no detrimental effect on model performance or the234

distribution of data handling. This approach capitalizes on the stability of the long-tail clusters and235

the dynamics of the larger ones, ensuring efficient data processing without compromising accuracy.236

Select Layer Our motivation for performing clustering is rooted in the premise that semantically237

similar data tends to be closer. However, it is important to note that models learn the semantics of238

data progressively through layers; as we delve deeper into the model layers, the semantic information239

becomes increasingly rich, which may in turn amplify distinctions between data points. To quantify240

this variation, we apply our strategy only on layers with larger inter-cluster distance. Since the last 2241

layers show a significant increase in inter-cluster distance, we apply our strategy in the last 2 layers,242

which is also the empirical best practice observed in existing moe-related works.[11, 26]243

Dispatch Embeddings For each coming embedding, we decide the index of the expert it is dispatched244

to with i = argminnj=1 ||v′ − cj ||/rj , where cj denotes the center of cluster j, and rj denotes the245

radius of cluster j. Note that the v′ here is the sequence embedding rather than a token embedding246

and is defined as the mean of all token embeddings in the sequence[17], and the dispatching also247

happens on the sequence level.248

Update cluster center The model’s parameter space undergoes gradual updates throughout training,249

causing a slow drift in the embedding space as the parameters evolve. To tackle this, we incorporate a250

dynamic mechanism to update the cluster centers concurrently with the assignment of clusters. For251

a given cluster mci, let its center at time t be denoted as cti. When a new embedding v arrives and252

is assigned to mci, we update cti with: ct+1
i = α · cti + (1 − α) · v′, where, α ∈ [0, 1] is a center253

update factor that determines the influence of the new embedding v′ on the existing center cti. This254

adaptive updating scheme ensures that cluster centers remain representative of the current state of the255

embedding space, even as it evolves through the training process.256

4 Related Works257

Long-Tail Prior research addressing the issue of long-tail learning has predominantly been con-258

ducted within the domain of computer vision. The objective is to accurately recognize and classify259

rare or infrequently occurring classes in a given dataset together with frequently occurring classes [43].260

There are several approaches to address the problem, including re-weighting [8], logit adjustment261

[4, 44], robust distributional matching [18, 35], and knowledge transfer [38, 34]. [37] declare that as262

the number of samples increases, the diminishing phenomenon suggests that there is a decreasing263

marginal benefit for a model to extract additional information from the data due to the presence of264

information overlap. Research in natural language processing has identified significant limitations265

in language models’ capacity to learn long-tail knowledge [28, 3]. Furthermore, [45] suggests that266

attempting to address this issue during the finetuning stage is often too late.267

Domain-Specific Finetuning Domain-specific finetuning, also known as domain-specific pretrain-268

ing, is highly advantageous to assist language models in requiring specialized domain knowledge. In269

one approach, contextualized embeddings are adapted to text from the target domain using masked270

language modeling, as detailed by Han and Eisenstein [16]. The concept of multi-phase pretraining271

involves secondary-stage unsupervised pretraining, exemplified by broad-coverage domain-specific272
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BERT variants like BioBERT [25]. Research by Gururangan et al. [15] extends this by proposing273

domain-adaptive pretraining (DAPT) from a broader corpus and task-specific pretraining (TAPT)274

which uses unlabeled data increasingly aligned with the task distribution. These studies underscore275

the importance of domain-relevant data for pretraining in both high and low-resource scenarios276

[16, 15].277

5 Experiments278

This section presents the experimental results of our model and other methods. In the experiments,279

our model only undergoes a pretrained phase, reading domain-specific data once. Other methods280

are pretrained on the same dataset and then finetuned on domain-specific datasets. Subsequently,281

all models are used as embedding models with all parameters frozen to generate embeddings for282

downstream tasks.283

Dataset and Evaluation We employ Wikipedia [13] as our pretraining dataset, which is also widely284

accepted in other works [25, 10]. We adopt some legal and medical domain-specific downstream285

tasks to show the effectiveness of our model. To ensure that the pretraining data do contain domain286

knowledge required by the downstream tasks, we mixed a relatively small amount (less than 8%)287

of legal-domain-specific data [1] and medical-domain-specific data [9] into the pretraining data288

to simulate a long-tail distribution. The datasets selected are listed in Table 3 in Appendix A.289

Concurrently, we report the test perplexity of each model after the pretraining phase, serving as290

evidence of model convergence. Task performances are reported by accuracy.291

Baselines Since our strategy is not restricted to a specific model structure, we adopt both BERT [10]292

and GPT [29] as the base models and compare all the strategies on these base models respectively.293

We also compare with a Switch-MoE [11] version of them to show the effectiveness of our routing294

strategy. More Detailed implementation setting is listed in Appendix A.295

5.1 Main Result296

Table 1 and Table 2 shows the performance of all models/strategies under our experiment setting297

with a trainable linear classifier for downstream tasks. */med means a model finetuned on medical-298

domain-specific data, and */legal means a model finetuned on legal-domain-specific data. We tested299

Clsuter-guided Sparse Expert on Attention and FFN respectively, denoted as MoA and MoF.300

Our method outperforms other models/strategies on almost all tasks, with an average improvement301

of around 3%, showing an ability to learn long-tail data from the pretraining dataset. Our method302

can be applied to either the Attention module or the FFN module, and both way will yield a better303

result compared with the finetuned baselines, showing a potential for eliminating the need for304

domain finetuning. While in certain scenarios, domain finetuning remains indispensable due to the305

privacy concerns associated with proprietary data, we argue that when pretraining datasets encompass306

domains similar to the proprietary one, our approach can still facilitate an enhanced domain finetuning307

performance. It is also notable that domain finetuning leads to overfitting and even catastrophic308

forgetting, resulting in a decrease in performance on tasks from non-related domains. More details309

are shown in Appendix A.310

Table 1: Results of strategies applied on BERT

Models Pretrain ppl Overruling Casehold GAD EUADR SST2 average

BERT/med 37.00 86.67 50.51 67.09 84.23 66.86 71.07 ± 0.22
BERT/legal 37.00 86.67 50.93 66.83 84.79 65.14 70.87 ± 0.23
MoE/med 31.00 85.00 50.49 64.52 83.10 64.79 69.58 ± 0.20
MoE/lgeal 31.00 85.83 50.30 64.32 84.79 63.88 69.82 ± 0.19

Ours/MoA 28.25 86.62 50.94 72.90 90.09 66.60 73.43 ± 0.18
Ours/MoF 34.64 89.10 50.82 71.65 91.23 67.98 74.16 ± 0.20
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Table 2: Results of strategies applied on GPT

Models Pretrain ppl Overruling Casehold GAD EUADR SST2 average

GPT/med 55.59 88.33 49.82 71.56 84.23 73.90 73.57 ± 0.17
GPT/legal 55.59 89.17 50.58 71.69 81.69 74.50 73.53 ± 0.23
MoE/med 40.69 91.25 50.11 72.77 83.38 72.03 73.91 ± 0.12
MoE/legal 40.69 91.60 49.68 72.66 83.38 71.97 73.86 ± 0.23

Ours/MoA 42.99 91.68 50.70 71.75 85.91 74.61 74.93 ± 0.08
Ours/MoF 43.38 93.33 51.26 73.30 85.63 76.00 75.90 ± 0.19

5.2 Analysis311

Expert analysis We analyze our model’s embedding space to determine if our method dispatches312

embeddings correctly. We sample data and perform a forward inference pass through the model,313

visualizing the dispatching path of our model. As is shown in Figure 5, our distribution strategy314

correctly and effectively dispatches data from different long-tail clusters to different experts. We315

further visualize the NTK in each expert of our model, and it can be observed that by dispatching316

long-tail data separately, the NTK in each expert becomes more consistent. Whereas in a baseline317

model, its NTK matrix shows a poor consistency of the batch data, since long-tail and non-long-tail318

data are not separated.319

(a) (b) (c)

Figure 5: a) The embedding space and routing result of our model. b) The NTK in each expert in our
model. c) The NTK in baseline. b) and c) are sampled from the FFN in the 10th layer.

Overhead Analysis For our method, the warm-up phase incurs no additional computation. At the320

end of the warm-up, The clustering algorithms are bounded by their worst-case time complexity321

O(N2d′), thus their impact on the total FLOPs compared to the whole pretraining is negligible322

when posed against the extensive computations involved in the model’s forward-backward passes.323

Our dispatching strategy introduces O(Cd′2) for comparing distance with each cluster, which is324

also negligible. For baseline methods, since they all undergo a finetuning stage, they introduce an325

additional 5% computation compared to the pretraining stage under our experimental settings.326

6 Conclusion327

In this paper, we seek to elucidate why language models require domain finetuning despite the328

presence of domain knowledge in their pretraining data. Our investigation uncovers that Sentences329

with lower frequency scores show diminished gradient consistency, resulting in increased test perplex-330

ity. This misalignment, particularly pronounced in low-frequency sentences, culminates in elevated331

test perplexity, suggesting a deficiency in effectively leveraging domain-specific information. To332

address this challenge, we introduce Cluster-guided Sparse Experts (CSE), grouping diverse long-tail333

domain data and dispatching them to different experts to enhance gradient consistency within each334

expert, thereby enabling the model to incorporate long-tail domain knowledge during pretraining.335

Experiments suggest that our approach has the potential to supplant the need for a dedicated domain336

finetuning stage. Through this approach, long-tail domain instances promote the formation of small,337

outlier clusters in the representation space, exhibiting a characteristic signature across varying stages338

of training and architectural depths.339
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Appendix491

A Experiments492

Table 3 shows the datasets used in our experiments. Table 4 shows the hyperparameters used in our493

implementations. We use a machine with 8 NVIDIA GeForce RTX 3090 GPUs with 24GB GPU494

memory as our experiment platform. Pretraining costs about 24 hours.495

Table 3: Datasets used for experiments

Pretraining dataset Description

Wikipedia ([13]) Wikipedia dataset containing cleaned articles of all languages.
The datasets are built from the Wikipedia dump with one
split per language. Each example contains the content of one
full Wikipedia article with cleaning to strip markdown and
unwanted sections.

legal([1]) In collaboration with Ravel Law, Harvard Law Library digi-
tized over 40 million U.S. court decisions consisting of 6.7
million cases from the last 360 years into a dataset that is
widely accessible to use.

PubMed([9]) PubMed comprises more than 36 million citations for
biomedical literature from MEDLINE, life science journals,
and online books.

Finetuning task Description

Overruling ([42]) A law dataset corresponds to the task of determining when a
sentence is overruling a prior decision.

Casehold([42]) Case Holdings On Legal Decisions, comprising over 53,000+
multiple choice questions to identify the relevant holding of
a cited case.

GAD([6]) A relation extraction dataset, to decide if a gene is related to
a specific disease.

EUADR([33]) Another relation extraction dataset, to decide if a gene is
related to a specific disease.

SST2([32]) The Stanford Sentiment Treebank consists of sentences from
movie reviews and human annotations of their sentiment.

Table 4: Hyperparameters of Models

Hyperparameters BERT-based GPT-based

FFN modules 4 6
Attention modules 4 6
attention heads 8 12
our-strategy-based layers 2 2
transformer layers 12 12
Hidden dimension size 768 768
Droupt 0.1 0.1
Attention dropout 0.1 0.1
Sequence length 128 256
Batch size 100 64
Max steps 36k 300k
Learning rate decay Cosine Cosine
random seed used 14, 24 22, 80

By monitoring the validation loss of the pretraining dataset(Figure 6), we show the Catastrophic496

Forgetting problem of the BERT model and its MOE method in the domain-specific finetuning phase.497

Despite our attempts at various combinations of generic data and domain-specific data during domain498
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finetuning, the best outcome among these still resulted in a decline in model performance on domains499

unrelated to its fine-tuning, indicating a limitation in the generalizability of the adapted model. As500

domain-specific finetuning proceeds, the validation loss of pretraining dataset has a significant rise501

and stays well above the convergence position of pretraining.

Figure 6: The validation loss of the pretraining dataset during the domain-specific finetuning phase.
502

B Limitations Discussions503

Although we use the method of mixing small-scale domain-specific datasets into pretraining data to504

simulate the long-tail distribution in those huge corpora, we cannot fully simulate the extremely rich505

pretraining data used on LLMs due to the limited training resources.506
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NeurIPS Paper Checklist507

1. Claims508

Question: Do the main claims made in the abstract and introduction accurately reflect the509

paper’s contributions and scope?510

Answer: [Yes]511

Justification: We claim clearly in Abstract and Introduction 1.512

Guidelines:513

• The answer NA means that the abstract and introduction do not include the claims514

made in the paper.515

• The abstract and/or introduction should clearly state the claims made, including the516

contributions made in the paper and important assumptions and limitations. A No or517

NA answer to this question will not be perceived well by the reviewers.518

• The claims made should match theoretical and experimental results, and reflect how519

much the results can be expected to generalize to other settings.520

• It is fine to include aspirational goals as motivation as long as it is clear that these goals521

are not attained by the paper.522

2. Limitations523

Question: Does the paper discuss the limitations of the work performed by the authors?524

Answer: [Yes]525

Justification: We write them in Appendix B.526

Guidelines:527

• The answer NA means that the paper has no limitation while the answer No means that528

the paper has limitations, but those are not discussed in the paper.529

• The authors are encouraged to create a separate "Limitations" section in their paper.530

• The paper should point out any strong assumptions and how robust the results are to531

violations of these assumptions (e.g., independence assumptions, noiseless settings,532

model well-specification, asymptotic approximations only holding locally). The authors533

should reflect on how these assumptions might be violated in practice and what the534

implications would be.535

• The authors should reflect on the scope of the claims made, e.g., if the approach was536

only tested on a few datasets or with a few runs. In general, empirical results often537

depend on implicit assumptions, which should be articulated.538

• The authors should reflect on the factors that influence the performance of the approach.539

For example, a facial recognition algorithm may perform poorly when image resolution540

is low or images are taken in low lighting. Or a speech-to-text system might not be541

used reliably to provide closed captions for online lectures because it fails to handle542

technical jargon.543

• The authors should discuss the computational efficiency of the proposed algorithms544

and how they scale with dataset size.545

• If applicable, the authors should discuss possible limitations of their approach to546

address problems of privacy and fairness.547

• While the authors might fear that complete honesty about limitations might be used by548

reviewers as grounds for rejection, a worse outcome might be that reviewers discover549

limitations that aren’t acknowledged in the paper. The authors should use their best550

judgment and recognize that individual actions in favor of transparency play an impor-551

tant role in developing norms that preserve the integrity of the community. Reviewers552

will be specifically instructed to not penalize honesty concerning limitations.553

3. Theory Assumptions and Proofs554

Question: For each theoretical result, does the paper provide the full set of assumptions and555

a complete (and correct) proof?556

Answer: [NA]557
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Justification: We achieved this part in the Analysis 2, and the relevant assumptions are558

indicated in the Reference.559

Guidelines:560

• The answer NA means that the paper does not include theoretical results.561

• All the theorems, formulas, and proofs in the paper should be numbered and cross-562

referenced.563

• All assumptions should be clearly stated or referenced in the statement of any theorems.564

• The proofs can either appear in the main paper or the supplemental material, but if565

they appear in the supplemental material, the authors are encouraged to provide a short566

proof sketch to provide intuition.567

• Inversely, any informal proof provided in the core of the paper should be complemented568

by formal proofs provided in appendix or supplemental material.569

• Theorems and Lemmas that the proof relies upon should be properly referenced.570

4. Experimental Result Reproducibility571

Question: Does the paper fully disclose all the information needed to reproduce the main ex-572

perimental results of the paper to the extent that it affects the main claims and/or conclusions573

of the paper (regardless of whether the code and data are provided or not)?574

Answer: [Yes]575

Justification: The Table 4 in the Appendix A shows the random seeds used in our experi-576

ments.577

Guidelines:578

• The answer NA means that the paper does not include experiments.579

• If the paper includes experiments, a No answer to this question will not be perceived580

well by the reviewers: Making the paper reproducible is important, regardless of581

whether the code and data are provided or not.582

• If the contribution is a dataset and/or model, the authors should describe the steps taken583

to make their results reproducible or verifiable.584

• Depending on the contribution, reproducibility can be accomplished in various ways.585

For example, if the contribution is a novel architecture, describing the architecture fully586

might suffice, or if the contribution is a specific model and empirical evaluation, it may587

be necessary to either make it possible for others to replicate the model with the same588

dataset, or provide access to the model. In general. releasing code and data is often589

one good way to accomplish this, but reproducibility can also be provided via detailed590

instructions for how to replicate the results, access to a hosted model (e.g., in the case591

of a large language model), releasing of a model checkpoint, or other means that are592

appropriate to the research performed.593

• While NeurIPS does not require releasing code, the conference does require all submis-594

sions to provide some reasonable avenue for reproducibility, which may depend on the595

nature of the contribution. For example596

(a) If the contribution is primarily a new algorithm, the paper should make it clear how597

to reproduce that algorithm.598

(b) If the contribution is primarily a new model architecture, the paper should describe599

the architecture clearly and fully.600

(c) If the contribution is a new model (e.g., a large language model), then there should601

either be a way to access this model for reproducing the results or a way to reproduce602

the model (e.g., with an open-source dataset or instructions for how to construct603

the dataset).604

(d) We recognize that reproducibility may be tricky in some cases, in which case605

authors are welcome to describe the particular way they provide for reproducibility.606

In the case of closed-source models, it may be that access to the model is limited in607

some way (e.g., to registered users), but it should be possible for other researchers608

to have some path to reproducing or verifying the results.609

5. Open access to data and code610
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Question: Does the paper provide open access to the data and code, with sufficient instruc-611

tions to faithfully reproduce the main experimental results, as described in supplemental612

material?613

Answer: [No]614

Justification: We will release our source code and detailed instructions for reproducing our615

results upon acceptance of this paper.616

Guidelines:617

• The answer NA means that paper does not include experiments requiring code.618

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/619

public/guides/CodeSubmissionPolicy) for more details.620

• While we encourage the release of code and data, we understand that this might not be621

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not622

including code, unless this is central to the contribution (e.g., for a new open-source623

benchmark).624

• The instructions should contain the exact command and environment needed to run to625

reproduce the results. See the NeurIPS code and data submission guidelines (https:626

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.627

• The authors should provide instructions on data access and preparation, including how628

to access the raw data, preprocessed data, intermediate data, and generated data, etc.629

• The authors should provide scripts to reproduce all experimental results for the new630

proposed method and baselines. If only a subset of experiments are reproducible, they631

should state which ones are omitted from the script and why.632

• At submission time, to preserve anonymity, the authors should release anonymized633

versions (if applicable).634

• Providing as much information as possible in supplemental material (appended to the635

paper) is recommended, but including URLs to data and code is permitted.636

6. Experimental Setting/Details637

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-638

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the639

results?640

Answer: [Yes]641

Justification: We show our experimental setting/details both in our Experiments 5 and in the642

Appendix A643

Guidelines:644

• The answer NA means that the paper does not include experiments.645

• The experimental setting should be presented in the core of the paper to a level of detail646

that is necessary to appreciate the results and make sense of them.647

• The full details can be provided either with the code, in appendix, or as supplemental648

material.649

7. Experiment Statistical Significance650

Question: Does the paper report error bars suitably and correctly defined or other appropriate651

information about the statistical significance of the experiments?652

Answer: [Yes]653

Justification: We show the standard deviation of accuracy in Table 1 and Table 2.654

Guidelines:655

• The answer NA means that the paper does not include experiments.656

• The authors should answer "Yes" if the results are accompanied by error bars, confi-657

dence intervals, or statistical significance tests, at least for the experiments that support658

the main claims of the paper.659

• The factors of variability that the error bars are capturing should be clearly stated (for660

example, train/test split, initialization, random drawing of some parameter, or overall661

run with given experimental conditions).662
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• The method for calculating the error bars should be explained (closed form formula,663

call to a library function, bootstrap, etc.)664

• The assumptions made should be given (e.g., Normally distributed errors).665

• It should be clear whether the error bar is the standard deviation or the standard error666

of the mean.667

• It is OK to report 1-sigma error bars, but one should state it. The authors should668

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis669

of Normality of errors is not verified.670

• For asymmetric distributions, the authors should be careful not to show in tables or671

figures symmetric error bars that would yield results that are out of range (e.g. negative672

error rates).673

• If error bars are reported in tables or plots, The authors should explain in the text how674

they were calculated and reference the corresponding figures or tables in the text.675

8. Experiments Compute Resources676

Question: For each experiment, does the paper provide sufficient information on the com-677

puter resources (type of compute workers, memory, time of execution) needed to reproduce678

the experiments?679

Answer: [Yes]680

Justification: We show these in Appendix A681

Guidelines:682

• The answer NA means that the paper does not include experiments.683

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,684

or cloud provider, including relevant memory and storage.685

• The paper should provide the amount of compute required for each of the individual686

experimental runs as well as estimate the total compute.687

• The paper should disclose whether the full research project required more compute688

than the experiments reported in the paper (e.g., preliminary or failed experiments that689

didn’t make it into the paper).690

9. Code Of Ethics691

Question: Does the research conducted in the paper conform, in every respect, with the692

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?693

Answer: [Yes]694

Justification: We have checked it.695

Guidelines:696

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.697

• If the authors answer No, they should explain the special circumstances that require a698

deviation from the Code of Ethics.699

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-700

eration due to laws or regulations in their jurisdiction).701

10. Broader Impacts702

Question: Does the paper discuss both potential positive societal impacts and negative703

societal impacts of the work performed?704

Answer: [NA]705

Justification:706

Guidelines:707

• The answer NA means that there is no societal impact of the work performed.708

• If the authors answer NA or No, they should explain why their work has no societal709

impact or why the paper does not address societal impact.710

• Examples of negative societal impacts include potential malicious or unintended uses711

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations712

(e.g., deployment of technologies that could make decisions that unfairly impact specific713

groups), privacy considerations, and security considerations.714
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• The conference expects that many papers will be foundational research and not tied715

to particular applications, let alone deployments. However, if there is a direct path to716

any negative applications, the authors should point it out. For example, it is legitimate717

to point out that an improvement in the quality of generative models could be used to718

generate deepfakes for disinformation. On the other hand, it is not needed to point out719

that a generic algorithm for optimizing neural networks could enable people to train720

models that generate Deepfakes faster.721

• The authors should consider possible harms that could arise when the technology is722

being used as intended and functioning correctly, harms that could arise when the723

technology is being used as intended but gives incorrect results, and harms following724

from (intentional or unintentional) misuse of the technology.725

• If there are negative societal impacts, the authors could also discuss possible mitigation726

strategies (e.g., gated release of models, providing defenses in addition to attacks,727

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from728

feedback over time, improving the efficiency and accessibility of ML).729

11. Safeguards730

Question: Does the paper describe safeguards that have been put in place for responsible731

release of data or models that have a high risk for misuse (e.g., pretrained language models,732

image generators, or scraped datasets)?733

Answer: [NA]734

Justification:735

Guidelines:736

• The answer NA means that the paper poses no such risks.737

• Released models that have a high risk for misuse or dual-use should be released with738

necessary safeguards to allow for controlled use of the model, for example by requiring739

that users adhere to usage guidelines or restrictions to access the model or implementing740

safety filters.741

• Datasets that have been scraped from the Internet could pose safety risks. The authors742

should describe how they avoided releasing unsafe images.743

• We recognize that providing effective safeguards is challenging, and many papers do744

not require this, but we encourage authors to take this into account and make a best745

faith effort.746

12. Licenses for existing assets747

Question: Are the creators or original owners of assets (e.g., code, data, models), used in748

the paper, properly credited and are the license and terms of use explicitly mentioned and749

properly respected?750

Answer: [Yes]751

Justification: We cite the creators and introduce assets in the Appendix A.752

Guidelines:753

• The answer NA means that the paper does not use existing assets.754

• The authors should cite the original paper that produced the code package or dataset.755

• The authors should state which version of the asset is used and, if possible, include a756

URL.757

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.758

• For scraped data from a particular source (e.g., website), the copyright and terms of759

service of that source should be provided.760

• If assets are released, the license, copyright information, and terms of use in the761

package should be provided. For popular datasets, paperswithcode.com/datasets762

has curated licenses for some datasets. Their licensing guide can help determine the763

license of a dataset.764

• For existing datasets that are re-packaged, both the original license and the license of765

the derived asset (if it has changed) should be provided.766
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• If this information is not available online, the authors are encouraged to reach out to767

the asset’s creators.768

13. New Assets769

Question: Are new assets introduced in the paper well documented and is the documentation770

provided alongside the assets?771

Answer: [NA]772

Justification:773

Guidelines:774

• The answer NA means that the paper does not release new assets.775

• Researchers should communicate the details of the dataset/code/model as part of their776

submissions via structured templates. This includes details about training, license,777

limitations, etc.778

• The paper should discuss whether and how consent was obtained from people whose779

asset is used.780

• At submission time, remember to anonymize your assets (if applicable). You can either781

create an anonymized URL or include an anonymized zip file.782

14. Crowdsourcing and Research with Human Subjects783

Question: For crowdsourcing experiments and research with human subjects, does the paper784

include the full text of instructions given to participants and screenshots, if applicable, as785

well as details about compensation (if any)?786

Answer: [NA]787

Justification:788

Guidelines:789

• The answer NA means that the paper does not involve crowdsourcing nor research with790

human subjects.791

• Including this information in the supplemental material is fine, but if the main contribu-792

tion of the paper involves human subjects, then as much detail as possible should be793

included in the main paper.794

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,795

or other labor should be paid at least the minimum wage in the country of the data796

collector.797

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human798

Subjects799

Question: Does the paper describe potential risks incurred by study participants, whether800

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)801

approvals (or an equivalent approval/review based on the requirements of your country or802

institution) were obtained?803

Answer: [NA]804

Justification:805

Guidelines:806

• The answer NA means that the paper does not involve crowdsourcing nor research with807

human subjects.808

• Depending on the country in which research is conducted, IRB approval (or equivalent)809

may be required for any human subjects research. If you obtained IRB approval, you810

should clearly state this in the paper.811

• We recognize that the procedures for this may vary significantly between institutions812

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the813

guidelines for their institution.814

• For initial submissions, do not include any information that would break anonymity (if815

applicable), such as the institution conducting the review.816
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